Two Regions of the Ryanodine Receptor Calcium Channel Are Involved in Ca2+-Dependent Inactivation
نویسندگان
چکیده
Skeletal (RyR1) and cardiac muscle (RyR2) isoforms of ryanodine receptor calcium channels are inhibited by millimollar Ca(2+), but the affinity of RyR2 for inhibitory Ca(2+) is ~10 times lower than that of RyR1. Previous studies demonstrated that the C-terminal quarter of RyR has critical domain(s) for Ca(2+) inactivation. To obtain further insights into the molecular basis of regulation of RyRs by Ca(2+), we constructed and expressed 18 RyR1-RyR2 chimeras in HEK293 cells and determined the Ca(2+) activation and inactivation affinities of these channels using the [(3)H]ryanodine binding assay. Replacing two distinct regions of RyR1 with corresponding RyR2 sequences reduced the affinity for Ca(2+) inactivation. The first region (RyR2 amino acids 4020-4250) contains two EF-hand Ca(2+) binding motifs (EF1, amino acids 4036-4047; EF2, amino acids 4071-4082), and the second region includes the putative second transmembrane segment (S2). A RyR1-backbone chimera containing only EF2 from RyR2 had a modest (not significant) change in Ca(2+) inactivation, whereas another chimera channel carrying only EF1 from RyR2 had a significantly reduced level of Ca(2+) inactivation. The results suggest that EF1 is a more critical determinant for RyR inactivation by Ca(2+). In addition, activities of the chimera carrying RyR2 EF-hands were suppressed at 10-100 μM Ca(2+), and the suppression was relieved by 1 mM Mg(2+). The same effects have been observed with wild-type RyR2. A mutant RyR1 carrying both regions replaced with RyR2 sequences (amino acids 4020-4250 and 4560-4618) showed a Ca(2+) inactivation affinity comparable to that of RyR2, indicating that these regions are sufficient to confer RyR2-type Ca(2+)-dependent inactivation on RyR1.
منابع مشابه
Ryanodine does not affect calcium current in guinea pig ventricular myocytes in which Ca2+ is buffered.
Calcium current in mammalian ventricular muscle is altered in the presence of ryanodine. Previous studies performed on rat ventricular cells have shown a slowing of Ca2+ current inactivation and suggest the hypothesis that ryanodine, by reducing the release of Ca2+ from the sarcoplasmic reticulum, reduces the availability of Ca2+ for inactivation of Ca2+ current (Ca(2+)-dependent inactivation)....
متن کاملActivation of calcium release assessed by calcium release-induced inactivation of calcium current in rat cardiac myocytes.
In mammalian cardiac myocytes, calcium released into the dyadic space rapidly inactivates calcium current (ICa). We used this Ca2+ release-dependent inactivation (RDI) of ICa as a local probe of sarcoplasmic reticulum Ca2+ release activation. In whole cell patch-clamped rat ventricular myocytes, Ca2+ entry induced by short prepulses from -50 mV to positive voltages caused suppression of peak IC...
متن کاملA model of graded calcium release and L-type Ca2+ channel inactivation in cardiac muscle.
We have developed a model of Ca(2+) handling in ferret ventricular myocytes. This model includes a novel L-type Ca(2+) channel, detailed intracellular Ca(2+) movements, and graded Ca(2+)-induced Ca(2+) release (CICR). The model successfully reproduces data from voltage-clamp experiments, including voltage- and time-dependent changes in intracellular Ca(2+) concentration ([Ca(2+)](i)), L-type Ca...
متن کاملModulation of Ca2+-gated cardiac muscle Ca2+-release channel (ryanodine receptor) by mono- and divalent ions.
The effects of mono- and divalent ions on Ca2+-gated cardiac muscle Ca2+-release channel (ryanodine receptor) activity were examined in [3H]ryanodine-binding measurements. Ca2+ bound with the highest apparent affinity to Ca2+activation sites in choline chloride medium, followed by KCl, CsCl, NaCl, and LiCl media. The apparent Ca2+ binding affinities of Ca2+ inactivation sites were lower in chol...
متن کاملCalcium signaling between sarcolemmal calcium channels and ryanodine receptors in heart cells.
Cardiac excitation-Ca2+ release coupling is, in essence, a tale of two molecules, sarcolemmal voltage-gated L-type Ca2+ channels (LCCs) and intracellular ryanodine receptors (RyRs), communicating via the Ca2+-induced Ca2+ release mechanism. Recent advances have provided a microscopic view of the intermolecular Ca2+ signaling between LCCs and RyRs. In a dyadic junction or a "couplon", LCCs open ...
متن کامل